
 

JAVA 

  Chapter-2 

What is an Array? Explain types of arrays in java?  

An array is a set of consecutive memory locations having same name and 

same type of data. Java provides three types of arrays as follows. 

1. Single Dimensional Array: - 

An array with only one sub-script is known as a single dimensional 

array. It is used to represent a list. 

Syntax: - 

data_type array_name[] = new data_type[size]; 

 Example: -  

int a[] = new  int[10]; 
This means "a" is a single dimensional array used to store 10 
integers. 
2. Two Dimensional Array (or) Double Dimensional Array: - 
An array with two sub-scripts is known as a double dimensional array. 

It is used to represent a table or a matrix. 

Syntax: - 

data_type array_name [][] = new data_type[rows][columns]; 

 Example: - 

int m[][]=new int[4][6]; 

This means "m" is a double dimensional array used to store 24 integers 

in 4     rows and 6 columns. 

3. Multi-Dimensional Array: - 
An array with more than two sub-scripts is known as a multi-

dimensional     array. 

Syntax: - 

data_type array_name [][][]=new data_type[rows][cols][tables]; 

 Example:- 

int p[][][]=new int[4][6][3]; 

This means "p" contains 3 tables each table contains 4 rows and 6 

columns. 

Accessing array elements using for each loop: - 
For each loop is used access array elements from first index to last 

index without explicitly specifying its positions. 

Syntax: - 

 for (data_type variable : array_name) 

 { 

    Body of the loop; 

 } 

/* Java program to access values of an array using for each loop */ 

import  java.io.*; 

class StringArray 

{ 

  public static void main(String  args[]) 

  { 

   String[] arr = {"Anji", "Satya", "Tulasi" , "Lakshmi"};   

   System.out.println("Accessing array elements using subscript");       

   for (int i=0; i<arr.length; i++)   

   {   

       System.out.println(arr[i]);   

   }   

   System.out.println("Accessing array elements using for each loop");   

   for(String x : arr)   

   {   

      System.out.println(x);   

   } 

  } 

} 

Explain Command Line Arguments in Java? 

command-line argument is an argument i.e. passed at the time of running 

the java program. The arguments passed from the console can be received 

by the main function as a string and it can be used as an input. So, 

it provides a convenient way to check the behavior of the program for 

the different values.      You can pass N (1,2,3 and so on) number of 

arguments from the command prompt. 

Simple example of command-line argument in java 



 

class Main 

{ 
  public static void main(String args[]) 
  { 
    System.out.println("Your first argument is: " + args[0]); 
  } 
} 
 

In this example, we are receiving only one argument and printing it.  

To run  this java program, you must pass at least one argument from 

the command prompt. 

  

How to Compile: -  

javac Main.java  

 

How to Run: -  

java Main Ramachnadra 

Output: - Your first argument is: Ramachandra 
 
Another example of command-line argument in java 

In this example, we are trying to pass more arguments at the 

command- line. 

To access the values, we have to traverse the array using for loop. 
 
/* Write java program to read student details using command line 
arguments */ 

class Main 
{ 

public static void main(String args[]) 
{ 

for(int i=0;i<args.length;i++)  

{ 

   System.out.println(args[i]); 

} 

} 

} 
How to Compile: -  
Javac Main.java 

How to Run: -  

Java Main Rajani B.Sc 26-10-2001 45000.00  

Output: -  

Rajani 

B.Sc 

26-10-2001 

45000.00 

What is inheritance? Explain types of inheritance in Java? 
Inheritance: The process of acquiring the properties of one object 

by another object is called inheritance. (or) The mechanism of 

deriving a new class from old class is called inheritance. 

The old class is called as super class/ Base class/ parent class. 

The new class is called as derived class/ sub-class/ child class. 

The inheritance allows sub classes to inherit, all variables and 

methods of their parent class. 

The Inheritance concept is used to reuse the variables and methods 

of a class in its subclass. So inheritance allows reusability of 

class members. 

SYNTAX: - 

class subclass_name extends superclass_name 

{ 

Variable declaration; 

Method declaration; 

} 
 

 In the above syntax subclass name and superclass name are valid 

identifiers. 

 extends is a keyword, and it is used to extend the 

properties of superclass to the sub class. 

 The subclass will contain its own variables and methods as 

well as   variables and methods of superclass. 



 

Types of inheritance: - 

Inheritance is classified into 5 types. 

1. Single inheritance. 
2. Multiple-inheritance. 
3. Multi-level inheritance 
4. Hierarchical inheritance. 

5. Hybrid Inheritance. 

1. Single inheritance: - 
The process of deriving only one sub class from one super class 

is called single inheritance. In the single Inheritance only one 

pair of Super class and one sub class exists. 

[A] (Super class) 

 
[B] (Sub class) 

 

Syntax: - 

class superclass name 

{ 

Variable declaration; 

Method declaration; 

} 
class subclassname extends superclassname 
{ 

Variable declaration; 

Method declaration; 

} 
Example: -  
class A 
{ 

Variable declaration; 

Method declaration; 

} 
class B extends A 
{ 

Variable declaration; 

Method declaration; 

} 
Important Rule: - 
Parent class object can access methods and members of parent class 
only. But sub class object can access methods and members of both sub 
class and parent class. 

/* Java program using single inheritance */ 

import java.util.Scanner; 

class A 

{ 

  int a; 

  A() 

  { 

      a=5; 

  } 

  void showa() 

  { 

     System.out.println("a="+a); 

  } 

} 

class B extends A 

{ 

  int b; 

  B() 

  { 

      b=10; 

  } 

  void showb() 

  { 

     System.out.println("b="+b); 

  } 

  void sum() 

  { 



 

     System.out.println("Sum="+(a+b)); 

  } 

} 

class  Single 

{ 

   public static void main(String args[]) 

   { 

      B x = new B(); 

      x.showa(); 

      x.showb(); 

   } 

  } 

2. Multiple Inheritance: - 
The process of deriving the new class from more than one old 

class is known as multiple inheritance. 

Super_class1 [A] [B] Super_class2 

  
[C] Sub_Class 

 

Java does not support multiple-inheritance. But it can be 

implemented by using interface. 

What is an interface, Explain? 

Interface is used to define standard behavior that can be implemented 

by a class or anywhere in the class hierarchy. An interface contains 

final variables (constant values) and abstract methods. The difference 

between class and interface is that the methods in an interface are 

only declared but not implemented, that means the methods do not have 

body. The methods in an interface should be public. 

Syntax to declare an interface: - 

public interface <interface-name> 

{ 

interface body; 

} 

Differences between class and interface: - 

Class Interface 

In class, we can instantiate 

variables and create an object.  

In an interface, we can’t 

instantiate variables and we can’t 

create an object. 

Class can contain concrete 

methods (methods with 

implementation)  

The interface cannot contain 

concrete methods 

The access specifiers used with 

class are private, protected and 

public. 

The access specifiers used with 

Interface is public only. 

To define subclass the keyword 

extends is used 

To define subclass the keyword 

implements is used 

Class is used for data 

encapsulation 

Interface is used for data 

abstraction 

We can’t achieve multiple 

inheritance using class 

Interface allows to achieve 

multiple inheritance in java 

/* Write a program to implement multiple inheritance */ 

 

import java.io.*;  

interface Home 

{ 

   String fn="Srinivas"; 

   String mn="Swathi";  

   String a="Kakinada";  

   public void bioData(); 

} 

interface College 

{ 

   String cn="Sri Chaitanya College";  

   String pn="Mohan Rao";  



 

   String ca="Vizag"; 

   public void academicData(); 

} 

class Student implements Home, College 

{ 

   String sn,c;  

   double  f;  

   int  pm;  

   void input() 

   { 

      sn = "Chinmayi";  

      c = "MCA"; 

      f = 20000; 

      pm = 98; 

  } 

  public void bioData() 

  { 

     System.out.println("\nStudent Name  : " + sn);  

     System.out.println("\nFather Name   : " + fn);  

     System.out.println("\nMother Name   : " + mn);  

     System.out.println("\nResidential Address  : " + a);  

 

  } 

  public void academicData() 

  { 

     System.out.println("\nStudent Course  : " + c);  

     System.out.println("\nCollege Name  : " + cn);  

     System.out.println("\nPrincipal Name  : " + pn);  

     System.out.println("\nCollege Address  : " + ca);  

     System.out.println("\nCourse Fee  : " + f);  

     System.out.println("\nPercentage of Marks  : " + pm); 

  }  

} 

class Main 

{ 

  public static void main(String x[]) 

  { 

    Student k = new Student();  

    k.input(); 

    k.bioData(); 

    k.academicData(); 

  } 

} 

/* java program to implement multiple inheritance */ 

import java.io.*; 

interface A 

{ 

  public void m1(); 

  public void m2(); 

} 

interface B 

{ 

  public void m3(); 

  public void m4();  

  public static int t1=20, t2=50; 

} 

class K implements A,B 

{ 

   public void m1() 

   { 

     System.out.println("It is my first method"); 

   } 

   public void m2() 

   { 

     System.out.println("It is my second method"); 

   } 

   public void m3() 



 

   { 

     System.out.println("It is my third method"); 

   } 

   public void m4() 

   { 

     System.out.println("It is my fourth method"); 

   } 

   void m5() 

   { 

     System.out.println("It is my fifth method"); 

     System.out.println("First Term Rank = " + t1); 

     System.out.println("Second Term Rank = " + t2); 

   } 

} 

class  Myclass 

{ 

   public static void main(String args[]) 

   { 

     K x = new K(); 

     x.m1(); 

     x.m2(); 

     x.m3(); 

     x.m4(); 

     x.m5(); 

    } 

} 

/* Write java program with real time example of an interface */ 

interface Couriers 

{ 

    public void  time();  

    public void  cost();  

    public void  service(); 

} 

class Professional implements Couriers 

{ 

   public void time() 

   { 

      System.out.println("Minimum time 4 hours "); 

   } 

   public void cost() 

   { 

      System.out.println("Minimum cost Rs.50/- "); 

   } 

   public void service() 

   { 

      System.out.println("It is an international courier service"); 

   } 

   void contact() 

   { 

      System.out.println("Local contact person : Mr. P S Prasd"); 

   } 

} 

class DTDC implements Couriers 

{ 

   public void time() 

   { 

      System.out.println("Minimum time 12 hours");  

      System.out.println("Maximum time depending on the distance "); 

   } 

   public void cost() 

   { 

      System.out.println("Minimum cost Rs.30/- "); 

   } 

   public void service() 

   { 

      System.out.println("It is the most secured national courier"); 

   } 



 

   void booking() 

   { 

      System.out.println("You can book through Online or Offline"); 

   } 

} 

class ANL implements Couriers 

{ 

   public void time() 

   { 

      System.out.println("Minimum time 1 day"); 

   } 

   public void cost() 

   { 

      System.out.println("Minimum cost Rs.20/- "); 

   } 

   public void service() 

   { 

      System.out.println("It is a popular domestic service"); 

   } 

   void transport() 

   { 

      System.out.println("Way of transport: Using RTC and Private"); 

   } 

} 

class MyExample 

{ 

   public static void main(String args[]) 

   { 

      Professional x = new Professional(); 

      DTDC y = new DTDC();  

      ANL z = new ANL(); 

      System.out.println("About Professional courier");  

      x.time(); 

      x.cost(); 

      x.service(); 

      x.contact(); 

      System.out.println("\n\nAbout DTDC courier");  

      y.time(); 

      y.cost(); 

      y.service(); 

      y.booking(); 

      System.out.println("\n\nAbout ANL courier");  

      z.time(); 

      z.cost(); 

      z.service();  

      z.transport(); 

   } 

} 

Types of inheritance: - 

3. Multilevel Inheritance: - 

If a sub class is derived from another sub class then it is called 

multilevel inheritance. 

 

[A] Super class 
 

[B] Intermediate Base class 

 
[C] Sub class 

 

Syntax: - 
class A 
{ 

Variable Declaration; 

Method declaration; 

} 



 

class B extends A 

{ 

Variable declaration 

Method declaration; 

} 
class C extends B 
{ 

Variable declaration; 

Method declaration; 

} 

In the above syntax A, B and C are valid identifiers. Class C 

contains its own variables and methods as well as the variables 

and methods of both the classes A and B. 

 

4. Hierarchical inheritance: - 
The process of deriving more than one class from an old class 

is called hierarchical inheritance. 

[A] 

  
[B] [C] [D] 

 

Syntax: - 
class A 
{ 

Variable declaration; 

Method declaration; 

} 
class B extends A 
{ 

Variable declaration; 

Method declaration; 

} 

class C extends A 

{ 

Variable declaration; 

Method declaration; 

} 

 

5. Hybrid inheritance: - 

The combination of two or more types of inheritances is known as 

hybrid inheritance.The purpose of using hybrid inheritance in Java 

is to modularize the code base into well-defined classes and provide 

code reusability. For example in the following diagram we combine 

Hierarchical and multiple inheritances to create hybrid inheritance. 

 

[A] 

  
[B] [C] 

  
[D] 

Interface A 

{ 

Constant Variables; 

Abstract Methods; 

} 
Interface B extends A 

{ 

Constant Variables; 

Abstract Methods; 

} 
Interface C extends A 
{ 

Constant Variables; 

Abstract Methods; 

} 
class D implements A, B 
{ 

Variable declaration; 



 

Method declaration; 

} 

 

/* Write java program using hybrid inheritance */ 

interface A 

{ 

  int a=10; 

  public void display_a(); 

} 

interface B extends A 

{ 

  int b=20; 

  public void display_b(); 

} 

interface C extends A 

{ 

  int c=30; 

  public void display_c(); 

} 

class D implements B, C 

{ 

  int sum,max; 

  public void proceed() 

  { 

    sum=a+b+c;  

    if(a>b && a>c) 

      max=a;  

    else if(b>c) 

      max=b;  

    else 

      max=c; 

  } 

  public void display_a() 

  { 

    System.out.println("a=" + a); 

  } 

  public void display_b() 

  { 

    System.out.println("b="+b); 

  } 

  public void display_c() 

  { 

    System.out.println("c="+c); 

  } 

  public void display_all() 

  { 

    System.out.println("sum = " + sum); 

    System.out.println("maximum = " + max); 

  } 

 

} 

class Main 

{ 

  public static void main(String args[]) 

  { 

    D obj = new D();  

    obj.proceed();  

    obj.display_a(); 

    obj.display_b();   

    obj.display_c(); 

    obj.display_all(); 

  } 

} 

Output: -  

a=10   

b=20   



 

c=30 

sum = 60 

maximum = 30 

 

Explain about "this" keyword in Java? 

In Java, the keyword "this" is used to refer the current object. 

It is used to access instance variables and methods in the current 

class. Ex1: - If there is ambiguity between the instance variables 

and parameters in a method, then this keyword resolves the problem 

of ambiguity. 

It is explained in the following example. 

 

Import java.io.*; 

class Student 

{ 

String name; 

double fee; 

void input(String name, double fee) 
{ 

this.name = name; 

this.fee = fee; 

} 

void output() 

{ 

System.out.println("Name = " + name); 

System.out.println("Fee = " + fee); 

} 
} 
class This1 
{ 

public static void main(String args[]) 

{ 

 Student x = new Student();  

 x.input("Srinivas",75000);    

 x.output(); 

} 

} 

 

/* this() method call can be used to invoke current class constructor. 

It is explained in the following program */ 

import java.io.*; 

class Student 

{ 

int id; 

String name; 

Student() 

{ 
System.out.println("Default constructor is invoked"); 

} 
Student(int id,String name) 

{ 

this(); // To invoke default constructor  

this.id = id; 

this.name = name; 
} 

void display() 

{ 

System.out.println("Student ID = " + id); 

System.out.println("Student Name = " + name); 

} 
} 
class This2 
{ 

public static void main(String args[]) 

{ 

Student x = new Student(111,"kiran"); 

Student y = new Student(222,"Charan"); 

x.display(); 

y.display(); 



 

} 

} 

Output: - 

 

Default constructor is invoked  

Default constructor is invoked 

 

Student ID = 111  

Student Name = Kiran 

 

Student ID = 222  

Student Name = Charan 

 

Explain about "super" keyword in Java? 

The super keyword in java is a reference variable that is used 

to refer immediate parent class object. 

Usage of super Keyword: - 
1. super is used to access immediate parent class instance variable. 
2. super is used to invoke immediate parent class method. 

3. super() is used to invoke immediate parent class constructor. 

 

/* Write Java program to accept super class members using super 
keyword */ 

import java.io.*; 

class Vehicle 

{ 
int speed=50; 

} 
class Bike extends Vehicle 
{ 

int 

speed=100; 

void 

display() 

{ 

  System.out.println("Bike Speed = " + speed);    

  System.out.println("Vehicle Speed = " + super.speed); 

} 
} 
class Super1 
{ 

public static void main(String args[]) 

{ 

Bike x = new 

Bike(); 

x.display(); 

} 

} 

/* Write java program to invoke immediate parent class method using 
super */ 

import java.io.*; 

class A 

{ 

int  a=10; 

void display() 

{ 
System.out.println("Value of class A = " + a); 

} 
} 

class B extends A 

{ 

int  b=20; 

void display() 

{ 
super.display(); 
System.out.println("Value of class B = " + b); 

} 

} 

class C extends B 

{ 



 

int  c=30; 

void display() 

{ 

super.display(); 

System.out.println("Value of class C = " + c); 
} 

} 
class Super2 
{ 

public static void main(String args[]) 

{ 

C obj = new C(); 

obj.display(); 

} 
} 
Output: - 
Value of class A = 10 

Value of class B = 20 

Value of class C = 30 

 

/* Java program to invoke parent class constructor using super() 
method */ 
import java.io.*; 

class Vehicle 

{ 
Vehicle(String vc) 
{ 

System.out.println("Vehicle colour is " + vc); 

} 

} 
class Bike extends Vehicle 
{ 

Bike(String vc, String bc) 
{ 

super(vc); 

System.out.println("Bike colour is " + bc); 
} 

} 

class Super3 
{ 

public static void main(String args[]) 

{ 
Bike b=new Bike("Red","Black"); 

} 

} 

Output: - 

Vehicle colour is Red 

Bike colour is Black 

Explain about "final" keyword in Java? 
in Java, the keyword "final" is used to declare instance variable. 

If you make any instance variable as final, you cannot change 

its value. It will be regarded as a constant. 

 

/* Write java program using final variable */ 
import java.io.*; 

class College 

{ 

final String cn="Aditya, Kakinada";  

long p; 

double f; 

void input() 

{ 

cn="KIET, Korangi"; //Error because "cn" is final 

variable p=245165; 

f=45000.00; 
} 
void output() 
{ 

System.out.println("College Name : " + cn);  

System.out.println("Phone Number : " + p);  

System.out.println("College Fee : " + f); 



 

} 

} 
class Final1 

{ 

public static void main(String args[]) 
{ 

College x = new 

College(); x.input(); 

x.output(); 
} 

} 

FINAL METHOD 

A method which is declared using the keyword "final" is known as 

a "final method". If you make any method as final, you cannot 

override it. 

/* Write java program to define a final method. */ 

import java.io.*; 

class Human 

{ 
final void food() 
{ 
System.out.println("Human eat raw and cooked food"); 

} 

} 

class Baby 

{ 

void food() //Error because final method cannot be Overridden 

{ 
System.out.println("Baby eats Cerelac or Nestum"); 

} 
} 

class Final2 

{ 
public static void main(String args[]) 

{ 

Baby  x = new Baby(); 

x.food(); 

} 

} 

FINAL CLASS 

If you make any class as final, you cannot extend it.  That means 

a final class should not contain any sub class. 

/* Write java program to create a final class */ 
import java.io.*; 

final class Bike 

{ 

Bike() 
{ 
System.out.println("This is bike class"); 

} 

} 
class HeroHonda extends Bike 
{ 

void output() 

{ 

System.out.println("Hero Honda, is an Indian multinational 

motorcycle and scooter manufacturer"); 

} 
} 
class Final3 
{ 

public static void main(String args[]) 

{ 

HeroHonda x = new HeroHonda(); 

x.output(); 

} 
} 

Output: - Error because we cannot inherit HeroHonda from final Bike 

What is Method Overriding? Explain its features? 

If a child class has the same method which is already defined in its 



 

parent class, then it is known as method overriding in Java. 

Rules for Java Method Overriding 

1. The method must have the same signature as in the parent class. The 
means the overloaded method should have same name, same parameters 

and same return type. 

2. There must be an IS-A relationship between the classes. 
Usage of Java Method Overriding 

1. Method overriding is used to provide specific implementation for 
child class method which is already defined by its parent class. 

2. Method overriding is used for runtime polymorphism 
Note: -  

1. A static method cannot be overridden. Because static method is 
bound with class whereas instance method (overridden method) is 

bound with object. Static belongs to class area and instance 

belongs to heap area. 
2. We cannot override main() method because is main() is a static 

method. 

/* Write java program using method overriding */ 
import  java.io.*; 

class Bank 

{   

    int getRateOfInterest() 

    { 

        return 8; 

    }   

}   

class SBI extends Bank 

{   

    void aboutus() 

    { 

       System.out.println("SBI is a Public Sector Bank"); 

    }   

}   

class ICICI extends Bank 

{   

    int getRateOfInterest() 

    { 

        return 9; 

    }   

}   

class AXIS extends Bank 

{   

    int getRateOfInterest() 

    { 

        return 10; 

    }   

} 

class Baroda extends Bank 

{   

}     

class Main 

{   

 public static void main(String args[]) 

 {   

  SBI s = new SBI();   

  ICICI i = new ICICI();   

  AXIS a = new AXIS();   

  Baroda b = new Baroda(); 

  System.out.println("SBI Interest = "+ s.getRateOfInterest());   

  System.out.println("ICICI Bank Interest = " + i.getRateOfInterest());   

  System.out.println("AXIS Bank Interest = " + a.getRateOfInterest());   

  System.out.println("Baroda Bank Interest =" + b.getRateOfInterest());   

 }   

}  

Output: -  
SBI Interest = 8 



 

ICICI Bank Interest = 9 

AXIS Bank Interest = 10 

Baroda Bank Interest = 8 

Discuss about packages in java? 
  

Definition: - A package is an encapsulation mechanism to group similar 

or related classes and interfaces as a single unit. A package is a group 

of similar type of classes, interfaces, exceptions and errors. 

Advantages: - 

Package provides the following features.  

1. Naming conflicts were resolved.  

2. It is possible to identify every java component uniquely. 

3. Modularity of an application will be improved. 

4. Maintainability of an application will be improved 

5. Security for classes.  

Types of Packages: -  

Java provides two types of packages. They are …  

i) Predefined packages (or) Built-in packages 

ii) User-Defined packages.  

Predefined Packages: - There are many predefined packages in java such 

as lang, net, io, util, sql, awt, javax, swing, etc. Built-in packages 

consist of a large number of classes which are a part of Java API 

(application programming interfaces). Some of the commonly used built-

in packages are explained here under. 

 

 

1. java.lang: - It contains language support classes ( for e.g classes 

which defines primitive data types, math operations, etc.) . This 

package is automatically imported. The classes available in Java.lang 

package are Class, ClassLoader , Compiler, Loader, Math, Number , 

Byte, Double, Float, Integer, Boolean, Character, Long, Short, String, 

StrictMath, , StringBuffer, System, Thread, Throwable, etc.  

2. java.io: - It provides classes to perform Input output operations. 

The classes available in Java.io package are FileInputStream, 

FileOutputStream, BufferedInputStream, BufferedOutputStream, 

BufferedReader, BufferedWriter, ByteArrayInputStream, 

ByteArrayOutputStream, DataInputStream, DataOutputStream etc. 

3. java.util: - It provides utility classes which implement data 

structures like Linked List, Hash Table, Dictionary, etc. The classes 

available in Java.util package are Stack, Scanner, Timer, Random, 

Calendar, Currency, Dictionary, EnumMap, HashMap, ArrayList, etc.  

4. java.applet: - It is the smallest package in java. It provides 

classes necessary to create an applet. An applet is a small program 

that is intended not to be run on its own, but rather to be embedded 

inside another application. 

5. java.awt: - It provides classes to develop any GUI application. The 

classes available in java.awt package are TextField, TextArea, Label, 

RadioButton, CheckBox, Choice, List, Font, Frame, Graphics, etc. 

6. java.net: - It provides classes to perform networking operations. The 

classes available in java.net package are URL, URLConnection, 



 

HttpURLConnection, DatagramPacket, DatagramSocket, InetAddress, 

DatagramSocketImpl, Socket, MulticastSocket, ServerSocket, etc.  

/* Write java program using predefined package */ 

import java.lang.String; 

import java.lang.Math; 

class PackExample 

{ 

  public static void main(String args[]) 

  { 

    String obj = new String("Aditya"); 

    System.out.println("String Length = " + obj.length()); 

    System.out.println("String in lower case = " + obj.toLowerCase()); 

    System.out.println("String in upper case = " + obj.toUpperCase()); 

    System.out.println("Square root of 121 =  " + Math.sqrt(121)); 

  } 

}   

USER DEFINED PACKAGE 

We can create user defined package using the following syntax. 

package package_name; 

Ex: -  package college; 

Main Points: - 

1) A package name may be any valid identifier and it should be starts 

with a small letter. 

2) To create a package, package statement must be the first non-comment 

statement in the program. After that import statement is allowed.   

3) In any java source file at most one package statement will be 

allowed. That means we can create only one class in one package at a 

time. To create another class for the same or different package we need 

to write separate program. 

4) Save the program with class_name and use ".java" as its extension. 

5) A package should contain public classes only. 

6) Use the following command to compile the package program. 

javac  -d . filename.java 
Here "d" stands for destination, and "." denotes present working 

directory. (current directory) 

7) If the package class contains main() method, run the program using 

the following syntax. 

java packagename.classname 
8) To import a class from a user defined package, the following syntax 

is used. 

import  packagename.classname; 
 

Example1: - Write and execute package demo program. 

package Mypack1; 

public class Main 

{ 

   public static void main(String[] args)  

   { 

     System.out.println("Package Demo Program"); 

   }  

} 

 

C:\documents>  javac –d . Main.java 

Result: As a result, a new package "Mypack1" is created in which 

"Main.class" is placed. 

 

C:\documents>  java Mypack1.Main 

Output: Package Demo Program 

 

Example2: - Create user defined package Message with two classes and 

access the methods from another program by importing those classes.  

Step1: - Creating College class in message package 

package Message; 



 

public  class  College 

{ 

  public void msg1() 

  { 

    System.out.println("Tomorrow is holiday due to Sunday"); 

  } 

  public void  msg2() 

  { 

    System.out.println("Last date to pay I Term fee is 10-10-2022!"); 

  } 

  public void  msg3() 

  { 

    System.out.println("Today we have a seminar at 3PM"); 

  }  

} 

Compile the program using the following command. Don’t Run the program 

javac  -d  .  College.java 

 

Step2: - Creating Mobile class in message package 

package Message; 

public  class  Mobile 

{ 

  public void  alert1() 

  { 

    System.out.println("your validity will be expired within two days"); 

  } 

  public void  alert2() 

  { 

    System.out.println("Recharge immediately for uninterrupted calls"); 

  } 

  public void  recharge() 

  { 

    System.out.println("Recharge with 75/- for 21 days unlimited calls"); 

  }  

} 
    

Compile the program using the following command. Don’t Run the program 

javac  -d  .  Mobile.java 
 

Step3: - accessing College and Mobile classes from message package 
 

import Message.College; 

import Message.Mobile; 

class  Student 

{ 

   public static void main(String args[]) 

   { 

      College c = new College(); 

      Mobile m = new Mobile(); 

      System.out.println("College Messages:-"); 

      c.msg1(); 

      c.msg2(); 

      c.msg3(); 

      System.out.println("\nMobile Messages:-"); 

      m.alert1(); 

      m.alert2(); 

      m.recharge(); 

    }  

} 

Compile the program using the following command. 

javac Student.java 

Run the program using the following command. 

java Student 

Output: -  

College Messages: - 

Tomorrow is holiday due to Sunday 

Last date to pay I Term fee is 10-10-2022! 

Today we have a seminar at 3PM 



 

Mobile Messages: - 

your validity will be expired within two days 

Recharge immediately for uninterrupted calls 

Recharge with 75/- for 21 days unlimited calls 
 

Explain exception handling in Java? 
  

Definition: - An exception is an unexpected run time error that interrupts 

normal flow of execution and causes abnormal program termination. By 

using exception handling technique, we can deal with unwanted errors 

which are raised at runtime and allow the JVM to execute the remaining 

part of the program. 
Generally, we have 2 types of errors in Programming. They are syntax 

errors and runtime errors. The syntax errors are modified at the time 

of compilation. But we should suffer with runtime errors. To solve this 

problem java provides exception handling technique. In this process, 

all executable statements were written in between "try" and "catch" 

keywords. The keyword "catch" is used to raise the exception when 

corresponding error occurs. Java supports two types of exceptions. They 

are  

(i) Pre-Defined exceptions  

(ii) (ii)User-Defined exceptions.  

Predefined exceptions are classified into two types. 

1) Asynchronous Exceptions: -  These are used to deals with hardware 

problems and external problems. Some examples are … 
1. Mouse Failure 

2. Keyboard and Motherboard Failures 

3. Memory Problems 

4. Power Failures 

Java.lang.Error is a super class of all asynchronous Exception Classes. 
 

2. Synchronous exceptions: - These are used to deals with programmatic 

run time errors. Java.lang.Throwable is a super class of all 

synchronous Exception Classes. Synchronous Exceptions are divided into 

two types. They are …  

1. Checked Exceptions 

2. Unchecked Exceptions 

1) Checked exceptions. Also called compile-time exceptions, 

the compiler checks these exceptions during the compilation process to 

confirm if the exception is being handled by the programmer. If not, 

then a compilation error displays on the system. Checked exceptions 

include SQLException, ClassNotFoundException, IOException, 

InstantiationException, InterruptedException, NoSuchMethodException, 

NoSuchFieldException, etc. 

2) Unchecked exceptions. Also called runtime exceptions, these 

exceptions occur during program execution. These exceptions are not 

checked at compile time, so the programmer is responsible for handling 

these exceptions. Unchecked exceptions do not give compilation errors. 

Examples of unchecked exceptions include NullPointerException, 

ArrayIndexOutOfBoundsException, IllegalStateException, 

NullPointerException, NumberFormatException, StackOverflowError, 

ArithmeticException, etc.  
 

/* Write a program using ArithmeticException */ 
class Eclass1 

{ 

  public static void main(String  x[]) 

  { 

   int  a=10,b=5,c=5,d; 

   try 

   { 

      d=a/(b-c); 

      System.out.println("Value of a/(b-c) = " + d); 

   } 

    catch(ArithmeticException e) 

   { 

      System.out.println("Dividing a number with zero is illegal"); 

   } 

http://docs.oracle.com/javase/8/docs/api/java/io/IOException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/InstantiationException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/InterruptedException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/NoSuchMethodException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/NoSuchFieldException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/ArrayIndexOutOfBoundsException.html
http://www.coderanch.com/how-to/java/IllegalStateException
http://docs.oracle.com/javase/8/docs/api/java/lang/NullPointerException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/NumberFormatException.html
http://docs.oracle.com/javase/8/docs/api/java/lang/StackOverflowError.html


 

  } 

} 

/* Write a program using ArrayIndexOutOfBoundsException */ 
 

class Eclass2 

{ 

   public  static  void  main(String  s[]) 

   { 

      int  a[] = {12,23,34,45,56,90} 

      try 

      { 

          int c = a[10]-5; 

          System.out.println("Value = " + c); 

      } 

      catch(ArrayIndexOutOfBoundsException   e) 
      { 

           System.out.println("Array Overflow"); 

      } 

   } 

}  
 

/* USER DEFINED EXCEPTIONS 

We can create our own exception classes by extending the "Exception" 

class. The extended class contains attributes, constructors and methods 

like any other classs. The "throws" keyword is used while implementing 

a user-defined exception. 

In the following example "IllegalValueException" is raised when student 

rno is less than zero or percentage of marks is greater than 100 */ 

import  java.io.*; 

class IllegalValueException extends Exception 

{ 

} 

class Student 

{ 

 int rno,pm; 

 public Student(int  a, int  b) 

 { 

    rno=a; 

    pm=b; 

 } 

 void show() throws IllegalValueException  

 { 

    if ( rno<=0  ||  pm>100 ) 

      throw new IllegalValueException(); 

    else 

    { 

     System.out.println("Roll Number = " + rno); 

     System.out.println("Percentage of Marks = " + pm); 

    } 

  } 

} 

class Eclass3 

{ 

  public  static void main(String  args[]) 

  { 

    Student  s = new Student(12,181); 

    try 

    { 

      s.show(); 

    } 

    catch(IllegalValueException  e) 

    { 

     System.out.println("Invalid rno or percentage of  

                                     marks found in student class"); 

    } 

  } 

} 


	JAVA
	What is an Array? Explain types of arrays in java?
	1. Single Dimensional Array: -
	2. Two Dimensional Array (or) Double Dimensional Array: -
	3. Multi-Dimensional Array: -
	Accessing array elements using for each loop: -
	Explain Command Line Arguments in Java?
	Simple example of command-line argument in java
	Another example of command-line argument in java
	/* Write java program to read student details using command line arguments */
	What is inheritance? Explain types of inheritance in Java?
	SYNTAX: -
	Types of inheritance: -
	1. Single inheritance: -
	Syntax: -
	Important Rule: -
	2. Multiple Inheritance: -
	Super_class1 [A] [B] Super_class2
	[C] Sub_Class
	3. Multilevel Inheritance: -
	[A] Super class
	4. Hierarchical inheritance: -
	[A]
	[B] [C] [D]
	5. Hybrid inheritance: -
	[A] (1)
	[B] [C]
	[D]
	/* Write java program using hybrid inheritance */

	Explain about "this" keyword in Java?
	/* this() method call can be used to invoke current class constructor.
	Output: -
	/* Write Java program to accept super class members using super keyword */
	/* Write java program to invoke immediate parent class method using super */
	Output: - (1)
	/* Java program to invoke parent class constructor using super() method */
	Output: - (2)

	Explain about "final" keyword in Java?
	/* Write java program using final variable */
	/* Write java program to define a final method. */
	/* Write java program to create a final class */
	Output: - Error because we cannot inherit HeroHonda from final Bike
	What is Method Overriding? Explain its features?
	Rules for Java Method Overriding
	Usage of Java Method Overriding


